Failure Processes in Embedded Monolayer Graphene under Axial Compression
نویسندگان
چکیده
منابع مشابه
Failure Processes in Embedded Monolayer Graphene under Axial Compression
Exfoliated monolayer graphene flakes were embedded in a polymer matrix and loaded under axial compression. By monitoring the shifts of the 2D Raman phonons of rectangular flakes of various sizes under load, the critical strain to failure was determined. Prior to loading care was taken for the examined area of the flake to be free of residual stresses. The critical strain values for first failur...
متن کاملSuspended monolayer graphene under true uniaxial deformation.
2D crystals, such as graphene, exhibit the higher strength and stiffness of any other known man-made or natural material. So far, this assertion has been primarily based on modelling predictions and on bending experiments in combination with pertinent modelling. True uniaxial loading of suspended graphene is not easy to accomplish; however such an experiment is of paramount importance in order ...
متن کاملSubjecting a graphene monolayer to tension and compression.
Themechanical behaviorof grapheneflakesunderboth tension and compression is examined using a cantilever-beam arrangement. Twodifferent sets of samples are employed.One consists of flakes just supported on a plastic bar. The other consists of flakesembeddedwithin theplastic substrate.Bymonitoring the shift of the 2DRaman linewith strain, information on the stress transfer efficiency as a functio...
متن کاملFailure mechanism of monolayer graphene under hypervelocity impact of spherical projectile
The excellent mechanical properties of graphene have enabled it as appealing candidate in the field of impact protection or protective shield. By considering a monolayer graphene membrane, in this work, we assessed its deformation mechanisms under hypervelocity impact (from 2 to 6 km/s), based on a serial of in silico studies. It is found that the cracks are formed preferentially in the zigzag ...
متن کاملFailure mechanisms of graphene under tension.
Recent experiments established pure graphene as the strongest material known to mankind, further invigorating the question of how graphene fails. Using density functional theory, we reveal the mechanisms of mechanical failure of pure graphene under a generic state of tension at zero temperature. One failure mechanism is a novel soft-mode phonon instability of the K1 mode, whereby the graphene s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2014
ISSN: 2045-2322
DOI: 10.1038/srep05271